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ABSTRACT

System-level simulation is an activity that focuses on providing a full digital replica of the
spacecraft and its subsystems at the functional level. System simulators can be typically delivered
much ahead of actual hardware and their extreme flexibility lends them unique capabilities in terms
of failure injection and simulation of operational conditions. While extensively utilised by Large
System Integrators, their integration into the New Space sector and small spacecraft development
remains limited. To bridge this gap and democratise access to system simulation at small spacecraft
integrators and academic institutions, a high-performance, open-source system simulation
framework was developed that relies on a modern software development stack and incorporates
asynchronous programming techniques to deliver flexibility and scalability.

1 INTRODUCTION

The use of simulation for mission design dates back to the dawn of the space age. Its application for
system-wide modelling of spacecraft platforms at the avionics level (electrical and data buses, state
machines, etc.) is, however, a more recent development. This activity, commonly referred to as
system-level simulation, has become a key part of spacecraft development at large system
integrators (LSIs) and spans a number of applications ranging from on-board software simulation
facilities (SVF) to ground system tests simulators and training, operations and maintenance
simulators (TOMS).

European LSIs and space agencies have heavily invested in the development of dedicated
simulation frameworks, which today include Simulus/SimSat (ESA), Basiles (CNES), SimTG
(Airbus D&S), EuroSim (Airbus D&S), Gram (TAS), K2 (TAS) and Rufos (OHB). The
consolidation of these various efforts is an ongoing process, supported to a large extent by the ESA
RatioSim initiative and the ECSS SMP standardisation effort [1][2].

In contrast, the rate of adoption of system-level simulation remains marginal in small satellite
missions, including in the nascent New Space sector. Considering that an estimated 43% of small
satellite missions fail [3] and that 81% of these failures could be prevented with a more thorough
validation and verification process [4], the introduction of system-level simulation in V&V
activities appears as an obvious low-hanging fruit.

We posit that the main obstacles to wider adoption in smaller missions extends beyond lack of
awareness and largely stem from an absence of affordable, easy-to-use software frameworks. With
the exception of the end-of-life BASILES simulator [5], no space industry simulators are available
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on non-discriminatory terms, and none of them were meant for use by third parties, expose the
idiosyncrasies of their origin institution due to their tight integration with internal tools and
workflows.

We report here on the development of an open source, asynchronous discrete-event simulation
kernel [6][7] meant to serve as a foundation for an open ecosystem for spacecraft system simulation
and digital twinning. Although it intentionally eschews ECSS SMP compatibility for the sake of
ergonomy and performance, its development was guided and informed by experience with LSI
simulators. Beyond its liberal open-source licensing, the simulator kernel differs from other
simulators in several key aspects, including:

– implementation in the Rust programming language rather than C++,
– fully asynchronous inter-model communication,
– transparent, concurrency-safe parallelization,
– ergonomic API and lack of dependency on external code pre-processor or Integrated

Development Environment.

This contribution provides an overview of the simulator architecture and implementation. It is
followed by an introduction to the main modelling concepts, illustrated by an application to a
simple cold gas propulsion system. It concludes with an outlook on its current applications for
digital twinning and spacecraft-wide simulation and on prospective application.

2 DESIGN OVERVIEW AND RATIONALE

2.1 Asynchronous Is Better Than Synchronous

From a high-level perspective, asynchronous data exchange is a simple concept. In the context of
discrete-event simulators (DES), it is usually understood as the ability for a model to send data to
another model in a fire-and-forget fashion, allowing such data to be consumed at a later time by the
recipient.

The various SMP specifications, most notably SMP2 and ECSS SMP, provide support for
asynchronous inter-model communication through events and dataflow patterns, where a signal or
the modification of an output by a sender may be processed by a connected model in a deferred
manner. Other SMP idioms such as interfaces and immediate events are, however, synchronous by
nature: the caller causes the callee to be invoked immediately and its execution is resumed as soon
as the call returns. Such synchronous patterns enable models to perform a request to another model
and wait until a response is received before proceeding, a pattern which in C++ could only be
performed efficiently with synchronous calls until recently1.

Allowing synchronous communication between models comes, however, with two significant
downsides:

1. single-threaded execution: the execution of the various models that compose a simulation
cannot be parallelized without requiring the programmer to explicitly handle
synchronisation, a notoriously difficult and error-prone task,

2. unexpected model mutation: because the designer of a model has no control on how models
are connected during simulation bench assembly, if models are connected in a way that
allows model A to synchronously calls model B which in turn synchronously calls model A,
then data owned by model A might be modified while waiting for the call to model B to

1 This is now possible with coroutines, which were introduced in C++20.
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return, a situation which may not be expected and frequently leads to software defects that
are very difficult to detect.

The first shortcoming has only become more acute with the plateauing of single-core processor
performance and the ever-growing number of processor cores available on commodity hardware. To
the knowledge of the authors, as of today, no production-ready SMP simulator supports transparent
parallel execution, and it is unlikely that one ever will.

2.2 Asynchronous Programming And The Case For Rust

The request-reply pattern enabled by synchronous SMP interfaces and events is nevertheless
extremely useful, and often essential in the practical implementation of simulation models.

Because this pattern is also useful in the implementation of network services which routinely deal
with thousands of concurrent network requests, many mainstream programming languages, starting
with C#, have introduced language-level support for what is referred to as asynchronous
programming. The so-called async paradigm enables programmers to write programs as if they
were to be executed in a sequential, uninterrupted manner, yet their execution may be suspended at
specific locations marked by the await keyword, in a manner that is largely transparent to the
programmer.

// A regular, synchronous function.
fn read_bus_voltage() {

// A synchronous call to a model performing the acquisition of the bus
// voltage: the `send` request is executed immediately and returns as soon
// as it completes.
let bus_voltage = remote_acq_port.send(BUS_VOLTAGE_REQ);

}

// An asynchronous function.
async fn read_bus_voltage() {

// An asynchronous call: execution may be suspended to let the simulation
// runtime run other tasks; execution will resume at a later time once the
// request has been processed.
let bus_voltage = remote_acq_port.send(BUS_VOLTAGE_REQ).await;

}

In the context of a simulation, this means that when a model sends a request, the runtime suspends
the model’s execution and allocates the current operating system process for the execution of
another model’s tasks, which may or may not be the one servicing the request; once the request is
eventually executed and the response generated, the runtime pushes the task that issued the request
to the run queue so it can be resumed whenever processor resources become available. While
asynchronous programming can, and often is, combined with parallel execution on several
processor cores, it does not need to be. Javascript, notably, supports the concurrent execution of
async routines but interleaves their execution on a single system thread only.

In most programming languages that support it, the management of concurrent asynchronous
routines and their possible multiplexing on several processor cores is handled by the runtime and
cannot be tuned to specific use-cases. Rust and modern C++ implementations are an exception to
this rule and allow (and even require) custom executors. This is an opportunity for application
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domains outside network services where concurrent workloads may benefit from different
optimisations.

Due to its overall greater support for modern programming facilities and excellent support for
concurrent programming, the Rust programming language was preferred to C++ for the
development of a greenfield parallel executor dedicated to simulation. Rust’s strong focus on
memory safety and its fast adoption in safety- and mission-critical industries were other
determining factors in this choice.

2.3 Efficient Parallel Execution

Parallel discrete event simulators have been a field of active research for many decades. Most
use-cases focus, however, on distributed systems and on appropriate strategies to limit network
overhead by letting simulation network nodes to process by letting the nodes run out of . These
strategies present various trade-offs and, almost invariably, demand specific expertise from the part
of the simulation user.

In contrast, synchronisation within today’s multi-core processors can be done with very low latency,
offering a potential for parallelization that remains largely untapped in the context of discrete event
simulation.

Historically, parallelizing a simulation on such a processor would involve running each simulation
model on a different operating system thread (a logical unit of execution) and let the operating
system multiplex these threads on the available processor cores (physical units of execution). This
is, however, a costly approach due to context switch, an operation that requires making a copy of the
complete state of the process associated with a model, and reloading this copy when execution
resumes.

With the advent of asynchronous programming, cheaper strategies for parallelization on multi-core
processors have emerged where the multiplexing of tasks over physical cores is performed without
assistance from the operating system and, crucially, without need for costly context switches. While
such so-called cooperative multithreading is strictly less powerful than operating system threads, its
limitations are largely irrelevant in the context of simulation.

State of the art asynchronous runtimes such as the Go language scheduler and the tokio Rust library
[8] are very successful examples of the application of one such strategy, referred to as
work-stealing. In a work-stealing simulation runtime, each model is initially assigned to a particular
processor core. Wherever a model in idle state receives a message on one of its inputs, its state
changes to ready-to-run and it is queued for execution on the same processor as the model that
triggered the output. If, however, the runqueue of a processor becomes empty, one or several
models in ready-to-run state are migrated (“stolen”) from other models to maximise the use of
available processing resources.

2.4 Transparent Parallel Execution

Because simulation model designers are not necessarily versed into the subtleties of multi-threaded
programming, a key goal in the development of the simulator was to make parallel execution fully
transparent.

This goal was achieved by combining the work-stealing strategy outlined earlier with a
programming paradigm known as the actor model. In the actor model, the various messages sent to
the inputs of a simulation model are buffered in a single thread-safe queue associated with this
specific model, and dispatched to the model’s inputs according to their respective order of arrival.
This ensures that a model only ever processes one message at a time, thus avoiding the possibility
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of data races, i.e. the concurrent modification of the same data by different processes. From a model
designer viewpoint, therefore, the implementation of a model looks nearly exactly as if the model
was running on a conventional, single-threaded executor.

The actor model also allows the simulator to uphold specific message ordering guarantees that are
unaffected by parallel execution, which can be stated as follows:

– one-to-one message ordering guarantee: if model A sends two events or requests M1 and
then M2 to model B, then B will always process M1 before M2,

– transitivity guarantee: if A sends M1 to B and then M2 to C which in turn sends M3 to B,
even though M1 and M2 may be processed in any order by B and C, it is guaranteed that B
will process M1 before M3.

Figure 1: Implementation of asynchronous message-passing between simulation models
based on the actor model: input messages are dispatched from a single ordered queue.

3 MODEL IMPLEMENTATION

3.1 A simple example

A simplified cold gas propulsion system including a thruster and its tank are used to illustrate the
general usage of the simulation model API.

The system interfaces and connections to be modelled are shown in Fig. 2.

3.2 Tank model

The propellant mass is assigned to the tank upon model construction, and is thereafter updated by
the tank model whenever a model (in this case the thruster) sends to the consumed_mass input the
amount of propellant that has been extracted from the tank.

A model may also inquire the tank for the current reading from the pressure sensor through a
pressure telemetry request port.

Finally, whenever propellant mass is updated, the new value of the propellant mass is broadcast to
any model connected to the propellant_mass output port (e.g. a spacecraft dynamics model). The
only subtlety in the implementation of this model is the necessity to broadcast the initial propellant
mass when the simulation starts, which can be done by implementing the init method of the Model
object interface (or trait as interfaces are called in Rust).
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Figure 2: External interfaces and inter-model connections of a simplified cold gas
propulsion system.

In the simulator model API, input ports are simply asynchronous object methods that take a single
(optional) argument corresponding to the input type and return nothing. Replier ports are in turn
asynchronous object methods that take a single (optional) argument and return a value. With these
premises, the propellant tank model can be implemented in Rust as follows:

/// A pressurised propellant tank.
pub struct PropellantTank {

/// Propellant mass telemetry -- output port [kg].
pub propellant_mass: Output<f64>,

/// Remaining propellant mass -- internal state [kg].
mass: f64,

}

impl PropellantTank {
/// A tank- and propellant-specific constant relating propellant mass to
/// tank pressure (the influence of temperature is neglected) [Pa/kg].
const TANK_CONSTANT: f64 = 1e5;

/// Creates a tank with the specified propellant mass.
pub fn new(mass: f64) -> Self {

assert!(mass > 0.0);

Self {
propellant_mass: Output::new(),
mass,

}
}

/// Mass consumed by a connected model [kg] -- input port.
pub async fn consumed_mass(&mut self, mass: f64) {
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self.mass -= mass;
assert!(self.mass >= 0.0);

// Propagate the change in mass to any model that may be connected.
self.propellant_mass.send(self.mass).await;

}

/// Tank pressure telemetry [][Pa] -- requestor port.
///
/// (The `async` signature is omitted here since there is no `await`)
pub fn pressure(&mut self) -> f64 {

self.mass * Self::TANK_CONSTANT
}

}

impl Model for PropellantTank {
/// Broadcasts the propellant pressure to any model connected to the
/// relevant output when the simulation starts.
async fn init(mut self, _: &Scheduler<Self>) -> InitializedModel<Self> {

self.propellant_mass.send(self.mass).await;

self.into()
}

}

3.3 Thruster model

The implementation of the cold gas thruster model demonstrates a few other features, such as
Requestor ports and scheduling. Any input port (that is, a model method taking an input value as
argument) and any replier port (a method that also returns a value) can take an additional Scheduler
argument that allows it to schedule one of the model’s methods at an arbitrary future time. In the
case of the thruster model, this capability is used to schedule the closing of the thruster valve.

/// A simple cold gas thruster.
pub struct ColdGasThruster {

/// Instantaneous thrust -- output port [N].
pub thrust: Output<f64>,
/// Propellant mass consumed by a single pulse -- output port [kg].
pub consumed_mass: Output<f64>,
/// Pressure telemetry from the tank -- requestor port [][Pa].
pub pressure: Requestor<(), f64>,

/// State of the valve -- internal state.
valve_is_open: bool,

}

impl ColdGasThruster {
/// A constant relating tank pressure to thrust [m^2].
const THRUST_CONSTANT: f64 = 1.2345e-6;
/// Exhaust velocity [m/s].
const V_SP: f64 = 300.0;

/// Creates a cold gas thruster with the valve initially closed.
pub fn new() -> Self {

Self {
thrust: Output::new(),
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consumed_mass: Output::new(),
pressure: Requestor::new(),
valve_is_open: false,

}
}

/// Generates a thrust pulse based on the requested impulse bit [N.s] -- input port.
///
/// This port receives the impulse bit to be generated and opens the valve
/// for the appropriate duration based on the current tank pressure.
pub async fn fire_cmd(&mut self, impulse_bit: f64, scheduler: &Scheduler<Self>) {

// Ignore commands sent while the valve is already open.
if self.valve_is_open {

return;
}
self.valve_is_open = true;

// Retrieve the tank pressure through an asynchronous request. In theory
// an arbitrary number of models might be connected to the pressure TM
// port so the request returns an iterator rather than a single value.
let pressure_tm: Vec<_> = self.pressure.send(()).await.collect();
let p = match &pressure_tm[..] {

[p] => p,
[] => panic!("the thruster must be connected to a tank"),
_ => panic!("the thruster cannot be connected to several tank"),

};

// Compute the pulse parameters.
let thrust = p * Self::THRUST_CONSTANT;
let pulse_duration = Duration::from_secs_f64(impulse_bit / thrust);

// Propagate the change of thrust to any model that may be connected.
self.thrust.send(thrust).await;

// Schedule the valve-closing method, passing the expected propellant
// mass bit at pulse completion.
let expected_mass_bit = impulse_bit / Self::V_SP;
scheduler

.schedule_event(pulse_duration, Self::close_valve, expected_mass_bit)

.unwrap();
}

/// Closes the valve -- private input port [kg].
///
/// The argument is the mass of propellant consumed by the pulse.
async fn close_valve(&mut self, mass_bit: f64) {

self.valve_is_open = true;

// Update the thrust.
self.thrust.send(0.0).await;

// Update the propellant mass in the tank.
self.consumed_mass.send(mass_bit).await;

}
}

impl Model for ColdGasThruster {
// Use the default implementation for `init()`, which does nothing.

}
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4 CONCLUSION AND OUTLOOK

The rapid development of the New Space sector and the transition of mission-critical industries
from C++ to Rust have created an opportunity to reassess not only the technical design of current
system simulators, but also their ability to address the needs of the growing number of small system
integrators.

Although it is at the moment much less featureful than mature SMP simulators, the new simulator
already demonstrates very significant gains in terms of model development API ergonomy and lays
the technical foundations for fully transparent parallel execution.

Its open-source licensing is also expected to make the simulator a de-facto standard for missions led
by small institutions and universities. It has been in particular selected as the baseline system
simulator for the upcoming 50kg ROMEO mission led by the Institute of Space Systems (IRS) at
the University of Stuttgart.

The open-source licence is also expected to foster the development of an ecosystem of digital twins
that would allow avionics manufacturers to provide their customer with a reliable, unambiguous
digital specification of their device. The simulator is already being used for this purpose within the
frame of project INVICTUS funded by the European Union, which foresees the development of a
system digital twin for a high power Hall thruster propulsion system currently under qualification.
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